top of page

Preprint

72. Large-scale single-virus genomics uncovers hidden diversity of river water viruses and diversified gene profilesNishikawa Y, Wagatsuma R, Tsukada Y, Chia-ling L, Chijiiwa R, Hosokawa M, Takeyama H.

bioRxiv 2024:2024-04. https://doi.org/10.1101/2024.04.18.589877 

 

71. A combination of two-enzyme system and enzyme engineering improved the activity of a new PET hydrolase identified from soil bacterial genome
Mabashi-Asazuma H, Hirai M, Sakurai S, Ide K, Kogawa M, Matsushita A, Hosokawa M, Tsuda S.

bioRxiv 2024 2024.02. 01.578500 https://doi.org/10.1101/2024.02.01.578500 

70. Uncovering novel endolysins against methicillin-resistant Staphylococcus aureus using microbial single-cell genome sequencing
Yoda T, Matsuhashi A, Matsushita A, Shibagaki S, Sasakura Y, Aoki K, Hosokawa M, Tsuda S.

bioRxiv 2023 2023.06. 22.546026 https://doi.org/10.1101/2023.06.22.546026

69. Single Amplified Genome Catalog Reveals the Dynamics of Mobilome and Resistome in the Human Microbiome

Kawano-Sugaya T, Arikawa K, Saeki T, Endoh T, Kamata K, Matsuhashi A, Hosokawa M.

bioRxiv 2023 2023.12. 06.570492  https://doi.org/10.1101/2023.12.06.570492

2024

68. Analysis of microbial dynamics in the soybean root-associated environments from community to single-cell levels.

Kifushi M, Nishikawa Y,  Hosokawa M, Ide K, Kogawa M, Anai T, Takeyama H.

J Biosci Bioeng. 2024 (in press) doi: 10.1016/j.jbiosc.2024.02.007

2023

67. Tools for microbial single-cell genomics for obtaining uncultured microbial genomes
Hosokawa M, Nishikawa Y.

Biophys Rev 2023. https://doi.org/10.1007/s12551-023-01124-y

65. Uncultured prokaryotic genomes in the spotlight: An examination of publicly available data from metagenomics and single-cell genomics.

Arikawa K, Hosokawa M.

Comput Struct Biotechnol J. 2023 Sep 12;21:4508-4518. doi: 10.1016/j.csbj.2023.09.010.

64. Enhancing the sensitivity of bacterial single-cell RNA sequencing using RamDA-seq and Cas9-based rRNA depletion.

Nishimura M, Takeyama H, Hosokawa M.

J Biosci Bioeng. 2023 Aug;136(2):152-158. doi: 10.1016/j.jbiosc.2023.05.010.

 

63. Target enrichment of uncultured human oral bacteria with phage-derived molecules found by single-cell genomics.

Hosokawa M, Iwai N, Arikawa K, Saeki T, Endoh T, Kamata K, Yoda T, Tsuda S, Takeyama H.

J Biosci Bioeng. 2023 Jul;136(1):58-66. doi: 10.1016/j.jbiosc.2023.04.005.

 

62. Combined actions of bacteriophage-encoded genes in Wolbachia-induced male lethality.

Arai H, Anbutsu H, Nishikawa Y, Kogawa M, Ishii K, Hosokawa M, Lin SR, Ueda M, Nakai M, Kunimi Y, Harumoto T, Kageyama D, Takeyama H, Inoue MN.

iScience. 2023 May 10;26(6):106842. doi: 10.1016/j.isci.2023.106842

 

61. Linking antigen specific T-cell dynamics in a microfluidic chip to single cell transcription patterns.

Ide H, Aoshi T, Saito M, Espulgar WV, Briones JC, Hosokawa M, Matsunaga H, Arikawa K, Takeyama H, Koyama S, Takamatsu H, Tamiya E.

Biochem Biophys Res Commun. 2023 May 21;657:8-15. doi: 10.1016/j.bbrc.2023.03.035.

60. Revealing within-species diversity in uncultured human gut bacteria with single-cell long-read sequencing.

Kogawa M, Nishikawa Y, Saeki T, Yoda T, Arikawa K, Takeyama H, Hosokawa M.

Front Microbiol. 2023 Feb 24;14:1133917. doi: 10.3389/fmicb.2023.1133917.

2022

 

59. Targeted single-cell genomics reveals novel host adaptation strategies of the symbiotic bacteria Endozoicomonas in Acropora tenuis coral.

Ide K, Nishikawa Y, Maruyama T, Tsukada Y, Kogawa M, Takeda H, Ito H, Wagatsuma R, Miyaoka R, Nakano Y, Kinjo K, Ito M, Hosokawa M, Yura K, Suda S, Takeyama H.

Microbiome. 2022 Dec 12;10(1):220. doi: 10.1186/s40168-022-01395-9.

 

58. Integrated spatial analysis of gene mutation and gene expression for understanding tumor diversity in formalin-fixed paraffin-embedded lung adenocarcinoma.

Yamazaki M, Hosokawa M, Matsunaga H, Arikawa K, Takamochi K, Suzuki K, Hayashi T, Kambara H, Takeyama H.

Front Oncol. 2022 Nov 24;12:936190. doi: 10.3389/fonc.2022.936190.

57. Reproducible and sensitive micro-tissue RNA sequencing from formalin-fixed paraffin-embedded tissues for spatial gene expression analysis.

Matsunaga H, Arikawa K, Yamazaki M, Wagatsuma R, Ide K, Samuel AZ, Takamochi K, Suzuki K, Hayashi T, Hosokawa M, Kambara H, Takeyama H.

Sci Rep. 2022 Nov 14;12(1):19511. doi: 10.1038/s41598-022-23651-6.

 

56. Massively parallel single-cell genomics of microbiomes in rice paddies.

Aoki W, Kogawa M, Matsuda S, Matsubara K, Hirata S, Nishikawa Y, Hosokawa M, Takeyama H, Matoh T, Ueda M.

Front Microbiol. 2022 Nov 3;13:1024640. doi: 10.3389/fmicb.2022.1024640.

 

55. Cancer Cachexia among Patients with Advanced Non-Small-Cell Lung Cancer on Immunotherapy: An Observational Study with Exploratory Gut Microbiota Analysis.

Hakozaki T, Nolin-Lapalme A, Kogawa M, Okuma Y, Nakamura S, Moreau-Amaru D, Tamura T, Hosomi Y, Takeyama H, Richard C, Hosokawa M, Routy B.

Cancers (Basel). 2022 Nov 2;14(21):5405. doi: 10.3390/cancers14215405.

 

54. Validation of the application of gel beads-based single-cell genome sequencing platform to soil and seawater.

Nishikawa Y, Kogawa M, Hosokawa M, Wagatsuma R, Mineta K, Takahashi K, Ide K, Yura K, Behzad H, Gojobori T, Takeyama H.

ISME Commun. 2022 Sep 29;2(1):92. doi: 10.1038/s43705-022-00179-4.

 

53. Identification of lipolytic enzymes using high-throughput single-cell screening and sorting of a metagenomic library.

Alma'abadi A, Behzad H, Alarawi M, Conchouso D, Saito Y, Hosokawa M, Nishikawa Y, Kogawa M, Takeyama H, Mineta K, Gojobori T.

N Biotechnol. 2022 Sep 25;70:102-108. doi: 10.1016/j.nbt.2022.05.006.

 

52. Exploring strain diversity of dominant human skin bacterial species using single-cell genome sequencing.

Ide K, Saeki T, Arikawa K, Yoda T, Endoh T, Matsuhashi A, Takeyama H, Hosokawa M.

Front Microbiol. 2022 Aug 5;13:955404. doi: 10.3389/fmicb.2022.955404.

 

51. Identification of two cancer stem cell-like populations in triple-negative breast cancer xenografts.

Nakayama J, Matsunaga H, Arikawa K, Yoda T, Hosokawa M, Takeyama H, Yamamoto Y, Semba K.

Dis Model Mech. 2022 Jun 1;15(6):dmm049538. doi: 10.1242/dmm.049538.

 

50. Strain-level profiling of viable microbial community by selective single-cell genome sequencing.

Hosokawa M, Endoh T, Kamata K, Arikawa K, Nishikawa Y, Kogawa M, Saeki T, Yoda T, Takeyama H.

Sci Rep. 2022 Mar 15;12(1):4443. doi: 10.1038/s41598-022-08401-y.

 

49. Single-cell metabolite detection and genomics reveals uncultivated talented producer.

Kogawa M, Miyaoka R, Hemmerling F, Ando M, Yura K, Ide K, Nishikawa Y, Hosokawa M, Ise Y, Cahn JKB, Takada K, Matsunaga S, Mori T, Piel J, Takeyama H.

PNAS Nexus. 2022 Mar 2;1(1):pgab007. doi: 10.1093/pnasnexus/pgab007.

2021

 

48. Recovery of strain-resolved genomes from human microbiome through an integration framework of single-cell genomics and metagenomics.

Arikawa K, Ide K, Kogawa M, Saeki T, Yoda T, Endoh T, Matsuhashi A, Takeyama H, Hosokawa M.

Microbiome. 2021 Oct 12;9(1):202. doi: 10.1186/s40168-021-01152-4.

47. Distinctive Regulation of Emotional Behaviors and Fear-Related Gene Expression Responses in Two Extended Amygdala Subnuclei With Similar Molecular Profiles.

Ueda S, Hosokawa M, Arikawa K, Takahashi K, Fujiwara M, Kakita M, Fukada T, Koyama H, Horigane SI, Itoi K, Kakeyama M, Matsunaga H, Takeyama H, Bito H, Takemoto-Kimura S.

Front Mol Neurosci. 2021 Sep 3;14:741895. doi: 10.3389/fnmol.2021.741895.

46.Cortical transcriptome analysis after spinal cord injury reveals the regenerative mechanism of central nervous system in CRMP2 knock-in mice.

Sugeno A, Piao W, Yamazaki M, Takahashi K, Arikawa K, Matsunaga H, Hosokawa M, Tominaga D, Goshima Y, Takeyama H, Ohshima T.

Neural Regen Res. 2021 Jul;16(7):1258-1265. doi: 10.4103/1673-5374.301035.

 

45. Integration of Droplet Microfluidic Tools for Single-Cell Functional Metagenomics: An Engineering Head Start.

Conchouso D, Al-Ma'abadi A, Behzad H, Alarawi M, Hosokawa M, Nishikawa Y, Takeyama H, Mineta K, Gojobori T.

Genomics Proteomics Bioinformatics. 2021 Jun;19(3):504-518. doi: 10.1016/j.gpb.2021.03.010.

2020

 

44. Draft Genome Sequence of Okeania sp. Strain KiyG1, Assembled from Single-Amplified Genomes Collected from Cape Kiyan, Okinawa, Japan.

Lewaru MW, Nishikawa Y, Ide K, Kogawa M, Hosokawa M, Samuel AZ, Sumimoto S, Nuryadi H, Suda S, Takeyama H.

Microbiol Resour Announc. 2020 Nov 12;9(46):e00837-20. doi: 10.1128/MRA.00837-20.

 

43. Slow-Cycling Cancer Stem Cells Regulate Progression and Chemoresistance in Colon Cancer.

Shiokawa D, Sakai H, Ohata H, Miyazaki T, Kanda Y, Sekine S, Narushima D, Hosokawa M, Kato M, Suzuki Y, Takeyama H, Kambara H, Nakagama H, Okamoto K.

Cancer Res. 2020 Oct 15;80(20):4451-4464. doi: 10.1158/0008-5472.CAN-20-0378. 

 

42. High-Quality Draft Single-Cell Genome Sequences of Two Gammaproteobacteria Strains Sampled from Soil in a Strawberry Farm.

Yoda T, Arikawa K, Saeki T, Matsuhashi A, Hosokawa M.

Microbiol Resour Announc. 2020 Aug 27;9(35):e00743-20. doi: 10.1128/MRA.00743-20.

 

41. Rapid inspection method for investigating the heat processing conditions employed for chicken meat using Raman spectroscopy.

Miyaoka R, Ando M, Harada R, Osaka H, Samuel AZ, Hosokawa M, Takeyama H.

J Biosci Bioeng. 2020 Jun;129(6):700-705. doi: 10.1016/j.jbiosc.2020.01.002

 

40. Evaluation of the effects of cell-dispensing using an inkjet-based bioprinter on cell integrity by RNA-seq analysis.

Yumoto M, Hemmi N, Sato N, Kawashima Y, Arikawa K, Ide K, Hosokawa M, Seo M, Takeyama H.

Sci Rep. 2020 Apr 28;10(1):7158. doi: 10.1038/s41598-020-64193-z.

 

39. Effective microtissue RNA extraction coupled with Smart-seq2 for reproducible and robust spatial transcriptome analysis.

Yamazaki M, Hosokawa M, Arikawa K, Takahashi K, Sakanashi C, Yoda T, Matsunaga H, Takeyama H.

Sci Rep. 2020 Apr 27;10(1):7083. doi: 10.1038/s41598-020-63495-6.

 

38. Time-lapse single-cell transcriptomics reveals modulation of histone H3 for dormancy breaking in fission yeast.

Tsuyuzaki H, Hosokawa M, Arikawa K, Yoda T, Okada N, Takeyama H, Sato M.

Nat Commun. 2020 Mar 9;11(1):1265. doi: 10.1038/s41467-020-15060-y.

 

37. Single-cell genomics of uncultured bacteria reveals dietary fiber responders in the mouse gut microbiota.

Chijiiwa R, Hosokawa M, Kogawa M, Nishikawa Y, Ide K, Sakanashi C, Takahashi K, Takeyama H.

Microbiome. 2020 Jan 23;8(1):5. doi: 10.1186/s40168-019-0779-2.

2019

 

36. High-throughput identification of peptide agonists against GPCRs by co-culture of mammalian reporter cells and peptide-secreting yeast cells using droplet microfluidics.

Yaginuma K, Aoki W, Miura N, Ohtani Y, Aburaya S, Kogawa M, Nishikawa Y, Hosokawa M, Takeyama H, Ueda M.

Sci Rep. 2019 Jul 29;9(1):10920. doi: 10.1038/s41598-019-47388-x.

 

35. A CCR5+ memory subset within HIV-1-infected primary resting CD4+ T cells is permissive for replication-competent, latently infected viruses in vitro.

Terahara K, Iwabuchi R, Hosokawa M, Nishikawa Y, Takeyama H, Takahashi Y, Tsunetsugu-Yokota Y.

BMC Res Notes. 2019 Apr 29;12(1):242. doi: 10.1186/s13104-019-4281-5.

 

34. Sequential Sensing by TLR2 and Mincle Directs Immature Myeloid Cells to Protect against Invasive Group A Streptococcal Infection in Mice.

Matsumura T, Ikebe T, Arikawa K, Hosokawa M, Aiko M, Iguchi A, Togashi I, Kai S, Ohara S, Ohara N, Ohnishi M, Watanabe H, Kobayashi K, Takeyama H, Yamasaki S, Takahashi Y, Ato M.

Cell Rep. 2019 Apr 9;27(2):561-571.e6. doi: 10.1016/j.celrep.2019.03.056.

2018

 

33. Effects of short-term endurance exercise on gut microbiota in elderly men.

Taniguchi H, Tanisawa K, Sun X, Kubo T, Hoshino Y, Hosokawa M, Takeyama H, Higuchi M.

Physiol Rep. 2018 Dec;6(23):e13935. doi: 10.14814/phy2.13935.

 

32. Combinatory use of distinct single-cell RNA-seq analytical platforms reveals the heterogeneous transcriptome response.

Kashima Y, Suzuki A, Liu Y, Hosokawa M, Matsunaga H, Shirai M, Arikawa K, Sugano S, Kohno T, Takeyama H, Tsuchihara K, Suzuki Y.

Sci Rep. 2018 Feb 22;8(1):3482. doi: 10.1038/s41598-018-21161-y.

 

31. Obtaining high-quality draft genomes from uncultured microbes by cleaning and co-assembly of single-cell amplified genomes.

Kogawa M, Hosokawa M, Nishikawa Y, Mori K, Takeyama H.

Sci Rep. 2018 Feb 1;8(1):2059. doi: 10.1038/s41598-018-20384-3.

 

2017

 

30. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics.

Hosokawa M, Nishikawa Y, Kogawa M, Takeyama H.

Sci Rep. 2017 Jul 12;7(1):5199. doi: 10.1038/s41598-017-05436-4.

 

29. Site-specific gene expression analysis using an automated tissue micro-dissection punching system.

Yoda T, Hosokawa M, Takahashi K, Sakanashi C, Takeyama H, Kambara H.

Sci Rep. 2017 Jun 28;7(1):4325. doi: 10.1038/s41598-017-04616-6.

 

28. Evaluation of cancer cell deformability by microcavity array.

Yoshino T, Tanaka T, Nakamura S, Negishi R, Shionoiri N, Hosokawa M, Matsunaga T.

Anal Biochem. 2017 Mar 1;520:16-21. doi: 10.1016/j.ab.2016.12.026.

2016

 

27. Manipulation of a Single Circulating Tumor Cell Using Visualization of Hydrogel Encapsulation toward Single-Cell Whole-Genome Amplification.

Yoshino T, Tanaka T, Nakamura S, Negishi R, Hosokawa M, Matsunaga T.

Anal Chem. 2016 Jul 19;88(14):7230-7. doi: 10.1021/acs.analchem.6b01475.

26. Bacterial inactivation by applying an alternating electromagnetic field using PAMAM dendron-modified magnetic nanoparticles
Arakaki A, Takahashi M, Hosokawa M, Matsunaga T, Tanaka T.

Electrochemistry. 2016  84(5):324-327 http://dx.doi.org/10.5796/electrochemistry.84.324

2015

 

25. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

Nishikawa Y, Hosokawa M, Maruyama T, Yamagishi K, Mori T, Takeyama H.

PLoS One. 2015 Sep 21;10(9):e0138733. doi: 10.1371/journal.pone.0138733.

 

24. Development of the automated circulating tumor cell recovery system with microcavity array.

Negishi R, Hosokawa M, Nakamura S, Kanbara H, Kanetomo M, Kikuhara Y, Tanaka T, Matsunaga T, Yoshino T.

Biosens Bioelectron. 2015 May 15;67:438-42. doi: 10.1016/j.bios.2014.09.002. 

 

23. Droplet-based microfluidics for high-throughput screening of a metagenomic library for isolation of microbial enzymes.

Hosokawa M, Hoshino Y, Nishikawa Y, Hirose T, Yoon DH, Mori T, Sekiguchi T, Shoji S, Takeyama H.

Biosens Bioelectron. 2015 May 15;67:379-85. doi: 10.1016/j.bios.2014.08.059.

21. Simple and rapid CD4 testing based on large-field imaging system composed of microcavity array and two-dimensional photosensor.

Saeki T, Sugamura Y, Hosokawa M, Yoshino T, Lim TK, Harada M, Matsunaga T, Tanaka T.

Biosens Bioelectron. 2015 May 15;67:350-5. doi: 10.1016/j.bios.2014.08.051. 

20. Evaluation of a Microbial Sensor as a Tool for Antimicrobial Activity Test of Cosmetic Preservatives.

Gomyo H, Ookawa M, Oshibuchi K, Sugamura Y, Hosokawa M, Shionoiri N, Maeda Y, Matsunaga T, Tanaka T.

Biocontrol Sci. 2015;20(4):247-53. doi: 10.4265/bio.20.247.

Pre-2015

 

19. In vivo live cell imaging for the quantitative monitoring of lipids by using Raman microspectroscopy.

Hosokawa M, Ando M, Mukai S, Osada K, Yoshino T, Hamaguchi HO, Tanaka T.

Anal Chem. 2014 Aug 19;86(16):8224-30. doi: 10.1021/ac501591d. 

 

18. In situ detection of antibiotic amphotericin B produced in Streptomyces nodosus using Raman microspectroscopy.

Miyaoka R, Hosokawa M, Ando M, Mori T, Hamaguchi HO, Takeyama H.

Mar Drugs. 2014 May 13;12(5):2827-39. doi: 10.3390/md12052827.

 

17. Digital cell counting device integrated with a single-cell array.

Saeki T, Hosokawa M, Lim TK, Harada M, Matsunaga T, Tanaka T.

PLoS One. 2014 Feb 13;9(2):e89011. doi: 10.1371/journal.pone.0089011. 

16. Monitoring of cellular behaviors by microcavity array-based single-cell patterning.

Osada K, Hosokawa M, Yoshino T, Tanaka T.

Analyst. 2014 Jan 21;139(2):425-30. doi: 10.1039/c3an01698f.

 

15. Electrochemical disinfection of fish pathogens in seawater without the production of a lethal concentration of chlorine using a flow reactor.

Tanaka T, Shimoda M, Shionoiri N, Hosokawa M, Taguchi T, Wake H, Matsunaga T.

J Biosci Bioeng. 2013 Oct;116(4):480-4. doi: 10.1016/j.jbiosc.2013.04.013. 

14. Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system.

Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T, Takahashi T, Murakami H, Nakamura Y, Tsuya A, Shukuya T, Ono A, Akamatsu H, Watanabe R, Ono S, Mori K, Kanbara H, Yamaguchi K, Tanaka T, Matsunaga T, Yamamoto N.

PLoS One. 2013 Jun 28;8(6):e67466. doi: 10.1371/journal.pone.0067466. 

 

13. Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer.

Hosokawa M, Yoshikawa T, Negishi R, Yoshino T, Koh Y, Kenmotsu H, Naito T, Takahashi T, Yamamoto N, Kikuhara Y, Kanbara H, Tanaka T, Yamaguchi K, Matsunaga T.

Anal Chem. 2013 Jun 18;85(12):5692-8. doi: 10.1021/ac400167x. 

12. Monitoring of benzene-induced hematotoxicity in mice by serial leukocyte counting using a microcavity array.

Hosokawa M, Asami M, Yoshino T, Tsujimura N, Takahashi M, Nakasono S, Tanaka T, Matsunaga T.

Biosens Bioelectron. 2013 Feb 15;40(1):110-4. doi: 10.1016/j.bios.2012.06.043. 

11. Efficient DNA release from PAMAM dendrimer-modified superparamagnetic nanoparticles for DNA recovery

Arakaki A, Shibata K, Mogi T, Hosokawa M, Hatakeyama K, Gomyo H, Taguchi T, Wake H, Tanaami T, Matsunaga T.       Polymer journal.  2012  44(6):672-677  https://doi.org/10.1038/pj.2012.32

 

10. Leukocyte counting from a small amount of whole blood using a size-controlled microcavity array.

Hosokawa M, Asami M, Nakamura S, Yoshino T, Tsujimura N, Takahashi M, Nakasono S, Tanaka T, Matsunaga T.

Biotechnol Bioeng. 2012 Aug;109(8):2017-24. doi: 10.1002/bit.24471. 

9. Characterization of magnetic nanoparticles modified with thiol functionalized PAMAM dendron for DNA recovery.

Tanaka T, Shibata K, Hosokawa M, Hatakeyama K, Arakaki A, Gomyo H, Mogi T, Taguchi T, Wake H, Tanaami T, Matsunaga T.

J Colloid Interface Sci. 2012 Jul 1;377(1):469-75. doi: 10.1016/j.jcis.2012.03.039. 

 

8. Assessment of benzene-induced hematotoxicity using a human-like hematopoietic lineage in NOD/Shi-scid/IL-2Rγnull mice.

Takahashi M, Tsujimura N, Yoshino T, Hosokawa M, Otsuka K, Matsunaga T, Nakasono S.

PLoS One. 2012;7(12):e50448. doi: 10.1371/journal.pone.0050448. 

7. Microfluidic device with chemical gradient for single-cell cytotoxicity assays.

Hosokawa M, Hayashi T, Mori T, Yoshino T, Nakasono S, Matsunaga T.

Anal Chem. 2011 May 15;83(10):3648-54. doi: 10.1021/ac2000225. 

6. Real-time detection of DNA hybridization on microarray using a CCD-based imaging system equipped with a rotated microlens array disk.

Mogi T, Hatakeyama K, Taguchi T, Wake H, Tanaami T, Hosokawa M, Tanaka T, Matsunaga T.

Biosens Bioelectron. 2011 Jan 15;26(5):1942-6. doi: 10.1016/j.bios.2010.07.015. 

5. Size-selective microcavity array for rapid and efficient detection of circulating tumor cells.

Hosokawa M, Hayata T, Fukuda Y, Arakaki A, Yoshino T, Tanaka T, Matsunaga T.

Anal Chem. 2010 Aug 1;82(15):6629-35. doi: 10.1021/ac101222x.

 

4. TCR-beta repertoire analysis of antigen-specific single T cells using a high-density microcavity array.

Arakaki A, Ooya K, Akiyama Y, Hosokawa M, Komiyama M, Iizuka A, Yamaguchi K, Matsunaga T.

Biotechnol Bioeng. 2010 Jun 1;106(2):311-8. doi: 10.1002/bit.22663.

3. Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification.

Arakaki A, Shibusawa M, Hosokawa M, Matsunaga T.

Appl Environ Microbiol. 2010 Mar;76(5):1480-5. doi: 10.1128/AEM.02124-09. 

 

2. High-density microcavity array for cell detection: single-cell analysis of hematopoietic stem cells in peripheral blood mononuclear cells.

Hosokawa M, Arakaki A, Takahashi M, Mori T, Takeyama H, Matsunaga T.

Anal Chem. 2009 Jul 1;81(13):5308-13. doi: 10.1021/ac900535h.

1. High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh.

Matsunaga T, Hosokawa M, Arakaki A, Taguchi T, Mori T, Tanaka T, Takeyama H.

Anal Chem. 2008 Jul 1;80(13):5139-45. doi: 10.1021/ac800352j. 

​​Japanese review/commentary
  1. Journal of the Society of Bioengineering, Compass for success in biomanufacturing, Masato Hosokawa, 101(7) 378-379 July 25, 2023

  2. Enzyme Engineering News, Enzyme search using large-scale data of uncultured microbial genes, Masato Hosokawa, Masato Hosokawa, Soichiro Tsuda, (90) 2023

  3. Bioscience and Industry, Development of comprehensive single-cell genome analysis method from uncultured microbial community, Masato Hosokawa, 80(4) 354-355 July 2022

  4. Experimental Medicine Special Issue, [Clinical implementation progresses next-generation cancer biomarkers, new detection technology, AI-accelerated liquid biopsy and future diagnostic modalities] (Chapter 2) New cancer diagnostic modalities and detection technologies Microbiome Development trends of cancer diagnostic technology used, Tatsuya Saeki, Yukie Sasakura, Masato Hosokawa, 40(10) 1529-1536 June 2022

  5. Journal of the Society of Bioengineering, [Future bioengineering pioneered by young researchers (Part 2)] Single cell analysis of bacterial flora, Masato Hosokawa, 100(6) 298-301 June 2022

  6. Industry-Academia-Government Collaboration Journal, Minister of Economy, Trade and Industry Award Innovating the biomanufacturing industry by utilizing the vast microbial genome database, Masato Hosokawa, 18(10) 9-10 2022

  7. Journal of the Society of Bioengineering, Interview 2, Masato Hosokawa, 99(8) 444-445 August 25, 2021

  8. History of medicine, [Single cell analysis - technology and applications] Technology Capturing diverse bacterial flora with single cell genome analysis, Masato Hosokawa, Masato Ogawa, 276(10) 947-954 March 2021

  9. Bioscience and Industry, Awakening mechanism of fission yeast revealed by single cell RNA-seq analysis, Jun Tsuyuzaki, Masato Hosokawa, Haruko Takeyama, Masamitsu Sato, 78(6) 507-509 November 2020

  10. Journal of the Japanese Society of Lactic Acid Bacteria, Single-cell genome analysis of environmental bacteria: Genome analysis method using microdroplets and its application examples, Yohei Nishikawa, Masato Hosokawa, Masato Ogawa, Haruko Takeyama, 31(1) 17-24 March 2020

  11. Experimental Medicine Special Issue, [Single Cell Genomics: Tissue functions and pathology are now visible at the single cell level!] (Chapter 3) Technology Development Single Cell Analysis of the Microbiome, Masato Hosokawa, Masato Ogawa, Haruko Takeyama, 37(20) 3521-3526 December 2019

  12. Monthly BIOINDUSTRY “Technical platform for single cell genome analysis of environmental microorganisms” Masato Hosokawa, Toru Maruyama, Yohei Nishikawa, Haruko Takeyama, 2017, CMC Publishing (co-author)

  13. Science of living organisms, challenges and prospects of single cell genomics targeting difficult-to-cultivate microorganisms (Special feature: Light and shadow of microbiota analysis) -- (Genome evolution/metagenomics), Masato Hosokawa, Yohei Nishikawa, Haruko Takeyama, 68(2) 150-154 March 2017

  14. Chemical sensors, massively parallel single cell analysis using droplet microfluidics, Masato Hosokawa, Yohei Nishikawa, Haruko Takeyama, 32(4) 159-165 2016

Book
  1. Latest trends in uncultured microorganism research Supervised by: Hidenori Aoyagi, Masato Hosokawa (Rs: Contributor, Scope: Chapter 10 Single cell genome analysis to utilize uncultured microorganisms), CMC Publishing, April 2023

  2. What can we learn from single cell analysis? Edited by Haruko Takeyama and Masato Hosokawa 2020, Kagaku Doujin

  3. Development of biotechnology through the introduction of AI Converting microbial genome information into big data and AI section Masato Hosokawa, Takashi Gojo Hori, Haruko Takeyama, 2018, CMC Publishing (co-author)

  4. “The forefront of big data of life” Co-author: “Chapter 3-4 Challenge to new omics analysis of marine genetic resources” Supervised by: Mitsumi Ueda, Haruko Takeyama, Tetsushi Mori, Michihiro Ito, Masato Hosokawa, 2014, Sea MC Publishing (co-author)

  5. “The forefront of single cell analysis” Co-author: “Chapter 4-2 Cell accumulation technology using microcavity array and its application to mRNA expression analysis” pp. 215-222. Supervised by: Hideki Kambara, Kore Matsunaga, Mitsuru Ueda Beauty Kore Matsunaga, Masato Hosokawa, 2010, CMC Publishing (co-author)

​Media
  1. February 28, 2023 Nikkan Kogyo Shimbun Web Media “Newswitch” “A substitute for petrochemical products using microorganisms. What is a “biofoundry” that holds the key to carbon neutrality? ”

  2. February 9, 2023 Nikkan Kogyo Shimbun Web Media “Newswitch” “[Chasing Deep Tech] The true identity of a startup creating a “map” of microbial genomes”

  3. February 6, 2023 Nikkei Shimbun “Gold rush targeting bacteria”

  4. January 16, 2023 Bloomberg” Japan: Where Innovation is borderless”

  5. October 21, 2022 Introduced as a company that won the Minister of Economy, Trade and Industry Award in the JST Industry-Academia-Government Collaboration Journal

  6. April 12, 2021 Toyo Keizai April 17 issue “Boiling! “Medical Tech Venture”’s “21 Promising Venture Companies: New Flagbearers Changing Healthcare”

  7. June 22, 2020 Chemical Daily “Microbial genome single cell analysis bitBiome precision at the strain level”

  8. May 26, 2020 Nikkei Sangyo Shimbun “Bacteria Tech: Steady enhancement of bacterial power”

bottom of page